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Limbless undulatory propulsion on land
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We analyze the lateral undulatory motion of a natural or artificial
snake or other slender organism that “swims" on land by propa-
gating retrograde flexural waves. The governing equations for the
planar lateral undulation of a thin filament that interacts friction-
ally with its environment lead to an incomplete system. Closures
accounting for the forces generated by the internal muscles and
the interaction of the filament with its environment lead to a
nonlinear boundary value problem, which we solve using a com-
bination of analytical and numerical methods. We find that the
primary determinant of the shape of the organism is its interaction
with the external environment, whereas the speed of the organism
is determined primarily by the internal muscular forces, consistent
with prior qualitative observations. Our model also allows us to
pose and solve a variety of optimization problems such as those
associated with maximum speed and mechanical efficiency, thus
defining the performance envelope of this mode of locomotion.
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lender organisms such as sperms, worms, snakes, and eels

propel themselves through a fluid using undulatory waves of
flexure that propagate along their body (1). However, undulatory
propulsion is not limited to movements through a liquid. Indeed,
the side-to-side slithering of snakes, worms, and other elongated
organisms that “swim” on land by lateral undulation has piqued the
curiosity and interest of humans since biblical times (2).% It is only
in the last century that we have begun to understand this unusual
(and seemingly inefficient) mode of locomotion (3). These studies
continue into the present, as zoologists try to decipher the neural
and physiological bases for the generation of rhythmic patterns of
muscular contraction (4, 5) and engineers build and analyze hyper-
redundant robotic machines inspired by these organisms (6, 7).
From a mechanistic perspective, lateral undulatory locomotion on
land has its genesis in the interaction between retrograde flexural
waves propagating along the slender body and anisotropic frictional
contact with a solid environment." Although this has been known
qualitatively for a long time (1, 3, 8, 9), a number of questions
remain. In particular, understanding the coupling of the endoge-
nous dynamics of muscular force generation to the exogenous
dynamics of the interaction of the organism with its external
environment to determine the gait and velocity remains an open
question. Furthermore, the important aspects of locomotion asso-
ciated with gait selection in the presence of sensorimotor feedback
are not addressed. Lateral undulatory locomotion on land allows us
to approach both these basic questions directly in the context of a
relatively simple and realistic model for the exogenous dynamics,
allowing the organism’s gait, defined here as the periodic shape of
the organism, its velocity, and the reactive forces on it to be
determined simultaneously. In addition, the simplicity of the model
allows us to explore the limits imposed by physics and physiology on
movement. Our work thus complements that of biologists who study
the anatomical basis, the physiology and performance of limbless
undulation on land, as well as that of the robotics community who
focus on motion analysis and planning from a control-theoretic
perspective.

At first glance, motion by lateral undulation seems paradoxical;
the animal glides forward continuously at a constant velocity,
tangential to itself everywhere, despite the fact that the only forces
in that direction are due to friction, which constantly retards this
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motion. The resolution of this apparent paradox is clear: propulsion
arises due to the in-plane lateral forces generated when the organ-
ism braces the sides of its body against the medium or substrate in
the presence of an anisotropy of resistance to lateral and longitu-
dinal motion of the slender, curved body (1, 8). A wave of flexure
that is fixed in the laboratory frame leads to alternating sideways
thrust, which then lead to forward (or backward) movement as
shown schematically in Fig. 1a. Locomotion, which is achieved
through the appropriate coupling of endogenous dynamics to
exogenous dynamics, involves four components: (i) the endogenous
dynamics of force production by muscle, (if) the exogenous dynam-
ics due to the interaction of the organism with its environment, (i)
the consideration of linear and angular momentum balance in the
body-environment system, and finally (iv) the proprioceptive feed-
back that involves sensorimotor coupling as the organism responds
to the forces on and in it. Here we will focus on the first three
components by considering the steady lateral undulatory move-
ments of a snake or similar organism on a solid substrate to
determine its shape and speed.

Formulation

Equations of Motion. Because snakes are long slender limbless
vertebrates, we model one as an inextensible, unshearable filament
of length L and circular cross-section (radius R), lying on a plane
whose normal is along z, with arc-length s € [0, L] parameterizing
each cross-section along the snake. We denote the position vector
of any cross-section of the filament as r(s, ¢), so that the tangent to
its center line t(s, £) = rs (s, f) makes an angle 6(s, ) with the x
direction (Fig. 1 @ and b). Conservation of linear and angular
momentum leads to the equations of motion (10)

F,+f=pr,, Mgz+ t X F= pyl0,z. [1]

Here (.), = d(.)/da, F(s, t) is the internal force resultant, M(s, ¢)z is
the internal moment resultant, (s, ¢) is the external force per unit
length at each cross-section, pg is the mass density, p = pomR? is the
mass per unit length, and I = wR*/4 is the second moment of the
cross section. The kinematic conditions that determine the location
of the snake are given by

Xxg = cosf, y, = sinf, 6, = k, [2]

where « is the curvature of the centerline. These conditions impose
the constraint of inextensibility naturally. We observe that Eqgs. 1
and 2 are valid in a Lagrangian frame that follows each material
cross-section along the organism.
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Fig. 1. The model. (a) A schematic view of lateral undulation (after ref. 1). The snake is moving at +x direction with a velocity v. Solid dots indicate the location
of inflection points. The shaded areas qualitatively describe the pattern and amplitude of muscle activity (4, 5). The dotted lines show the track left behind. For
undulations without lateral slip, the flexural waves are stationary relative to the ground, and thus the pattern of muscle activity is stationary relative to the lab
frame. For undulations with lateral slip, the dashed arrows show the slip velocity in the lab frame U and its components along the tangent and normal. (b) A
small segment of the organism shows the internal forces and moments at a cross-section. (c) A visco-elastic model of the same segment contains three parallel
elements, a passive elastic element (spring), a passive viscous element (dashpot), and an active muscular element.

For such a filament moving along its own tangent, rr = v(f)t,
where (¢) is the speed of any (all) point along the filament. Using
the identity (.), = vd(.)/ds, r» = ut + kv? n, where n(s, ¢) is the
normal to the centerline of the filament (Fig. 1b). Decomposing the
internal and external forces along the tangent and normal, we write
F=Tt+ Nnand f= —pn — (wlp| + w.pg)t where T(s, 1) is the
tension, N(s, ?) is the transverse shear force, p(s, ¢) is the normal
force per unit length of the filament due to its lateral interaction
with the substrate, u, is the lateral friction coefficient associated
with sliding tangentially against the lateral protuberances, and u,,
is the longitudinal friction coefficient associated with sliding on the
substrate. Using 6, = v k, + uk, Eq. 1 may be rewritten, in
component form, as

Ts — kN — “’p\p| - KwpP8 = Py [3]
NS+KT*p=pv2K [4]
Ms‘ +N= pOI(Usz + er)- [5]

We observe that Egs. 2-5 form a set of six equations for the nine
unknownsu, y, 6, k, v, T, N, M, p that include the shape of the snake,
the internal forces and moments in it, the external normal force on
it, and the velocity of motion. To complete the formulation, we need
to supplement Eqs. 2-5 with some additional closure relations for
the internal moment M and the external normal force p (a Lagrange
multiplier that enforces the condition of no transverse slip) and
supply some boundary and initial conditions. Focusing on steady
lateral undulations (v = 0) without lateral slip implies that the
above equations are also valid in the lab frame, because Eqgs. 2-5
are Galilean invariant (under the transformations’ = s — vt). From
hereon, we will consider only the case of steady undulation in the
lab frame.

Closure and Scaling. The internal moment M(s, f) at any cross-
section consists of a passive component with its origins in the
response of tissue that resists deformation, and an active compo-
nent with its origins in muscular contraction. A simple model for the
passive response of tissue is afforded by the linear Voigt model for
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viscoelasticity (11), which states that the uniaxial stress in bulk
tissue ¢ = E & + mg, with & and & being the strain and strain rate
in the tissue, £ being the Young’s modulus, and n being the viscosity
of the tissue (12, 13) (Fig. 1c). For the inextensible bending of
slender body, this implies that the passive moment M, = M, + M,,
where M, and M, are the clastic and viscous moments, and M, =
Elk, M,, = mlk, = mluk,. During lateral undulatory locomotion,
muscles on either side of the body are activated alternatively (4),
become active at the point of maximal convex flexion, and cease
activity at the point of maximal concave flexion. This leads to an
alternating active flexural moment generated by the muscles which
connect the vertebrae and skin of the snake; the pattern and
amplitude of muscle activity are qualitatively described by the
shaded area shown in Fig. la. In general, there is a time delay
between muscle activation and the development of contractile force
(= 0.1's, ref. 14); however, since this time is much smaller than the
period of muscle contraction (=1 s, ref. 5), we will neglect the
effects of this delay here. The simplest form of the active moment
that is consistent with this periodic pattern of muscle activity isM, =
myg sin (2ms/l), s € [0, [], where [ is the arc-length within one period
and m, is the amplitude of the active moment. Then, the total
internal moment, which is the sum of the passive and active
moments, is given by

M = m,sin(2ms/l) + Elxk + nlvk,. [6]

We also need a relation for the forces associated with the
interaction of the snake with the external environment, character-
ized by the normal force per unit length p. We note that p(s) should
(?) be periodic, except near the ends; (i) switch signs at the locations
of the maximally curved regions because the lateral force in the
neighborhood of these points does not contribute to active propul-
sion; and (iif) have a maximum in between the maximally curved
regions, which is consistent with observations. To go further, we
consider three different forms of p that satisfy the above conditions;
(hp=C(8(s — I/4) — 8(s — 3l/4)), 1.e., it is localized at the inflection
points of the (unknown) path, corresponding to the situation when
the snake pushes against an array of pegs (1). (II) p = C sin(2ws/l),

Guo and Mahadevan



Lo L

P

2N

i.e., it is proportional to the active moment, because a larger active
moment results in a large normal force. (III) p = C sin 6, i.e., it is
determined by the local shape of the snake. To understand this last
limit, we first consider the creeping motion of a worm or snake in
a viscous liquid. Then the viscous force on the body is proportional
to its relative speed to the medium (15), so that the lateral force per
unitlength p(s) = C, Usin 6, where C, is the drag coefficient along
the normal n(s, ¢), U is the slip velocity relative to the medium, and
U sin 6 is the lateral slip velocity (Fig. 1a). For undulations without
lateral slip [see supporting information (SI) Appendix for the case
of undulations with lateral slip], we consider the limiting process
where C; — o, U — 0, but C U = C = constant, which leads to
the above formula for p. For all three forms of p, C > 0 has the
dimensions of force per unit length, and is a phenomenological
characterization of the organism’s interaction with its environment.
These closure relations for M, p do not account for sensorimotor
feedback or proprioception, but do allow us to formulate a series of
problems for gait selection as a function of the endogenous and
exogenous dynamics. In the following, we will use

p = Csinf [7]1

for ease of analysis, but our calculations with the other forms (see
SI Appendix) yields qualitatively similar results for the factors that
determine the gait and velocity of the snake.

For steady undulations, v = 0. Then, substituting for the shear
force N from Eq. 5, the torque M from Eq. 6 and the normal force
per unit length p from Eq. 7 into Eqs. 3 and 4 leads to the system

. 2 2rs
T, = pypg + u,Clsind| — 7 macos| = |k

— (E = pov) kK, — nlvkkg,
) 2@\%  (2ms
Csinf = =) masin| =~ | + k(T — pv?)

- (E - POUz)Ist - nIUKsss [8]

for the variables 60(s), T(s), with s the coordinate in the traveling
wave frame. In terms of the dimensionless variables 5 = s/, X = x/I,
3=yl k =«l, T = (T — p1?)/pgl we can rewrite Eqs. 8 and 2, on
dropping the bars, as

cos(2ms) k

. — Bekyk — Vikgk,

T, = w, + p,Pr|sing| — Mo

0 = —Pr sinf + Mo sin(2ms) + kT — Beky, — Vikg,
X, = cosf,y, = sinf,0, = k,s € [0, 1] . [9]

Here, the dimensionless parameters w, and , are the longitudinal
and lateral friction coefficients; Mo = 4m°m,/pgl? is the dimension-
less amplitude of the active moment, Pr = C/pg is the dimensionless
lateral resistive force, and Be = (E — pov*)l/pgl® and Vi = nlv/pgl*
are the dimensionless passive elastic and viscous bending stiffnesses
of the slender organism. These dimensionless parameters fall into
two categories: uw, pp, Pr, which characterize the exogenous
dynamics of the system, and Mo, Be, Vi, which characterize the
endogenous dynamics of the system. For snakes moving on a variety
of surfaces, w, ~ p, ~ 0.2, Pr € [0.1, 100], Mo € [0, 200], Be €
4[1074,0.1], and Vi € 4[107, 0.01] (see SI Appendix). To complete
the formulation of the boundary value problem, we must specify
some boundary conditions. To eliminate rigid displacements and
rotations, we let x(0) = y(0) = 6(0) = 0. For long snakes, ignoring
end effects (see SI Appendix), we look for periodic solutions so that
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x|o :)’|0 :)’|1 = 9|0 = 6|1 = 0,T|0 = T|1,K|0 = K|17Ks|0 = Ks|1-
[10]

Periodic solutions also require kyulo = kKy|;; we note that this
condition follows by integrating the second equation in Eq. 9 subject
to Eq. 10.

The nonlinear system (Egs. 9 and 10) forms a seventh-order
system of ODEs with eight boundary conditions for the unknown
shape (x,y, 6, K, K, Kss), the tension 7, the speed vand the arc-length
within a period /. This freedom implies that we may, for example,
arbitrarily choose the speed v and arc-length within a period / to
account for the fact that the snake can vary its velocity and
wavelength during undulation (this fixes Be and Vi for a given
organism) and determine the amplitude of the active moment
Mo = Mo(u, up, Pr, Be, Vi). Alternately, we may choose Mo and
determine v and the other parameters, thus relating the endog-
enous and exogenous dynamics to the shape and speed of the snake.
If, in addition, there are physiological constraints such as limits on
muscular performance, speed of contraction, maximum force, etc.,
some of the parameters are related to each other; this would then
lead to further limitations on the locomotory performance enve-
lope of the organism.

Steady Undulation

We now consider the effects of the exogenous and endogenous
dynamics on steady movement with the aim of determining the
shape and speed of the organism as a function of its active and
passive properties as well as its interaction with its environment. To
simplify matters, we will use w, = u, = 0.2 for the friction
coefficients in all the numerical calculations.

For small-amplitude, long wavelength undulations, we may write
0 = 6 sin(2ms) with 6 << 1. Substituting this expression into Eq.
9, after some rearrangement, we find that (see SI Appendix)

Moy0y(1 + cos(4ms))

_TsJ’_FLw_

2
— Bek,k + p,Prég|sin(2ms)| = O(67) [11]
(Mo, — Préy)sin(21s) = O(63) [12]
X, =1+ 0(6))y, = 0+ 0(6), [13]
where
Mo, = Mo — (27)*6,Vi. [14]

To leading order, Eq. 12 yields
MOO = Preo. [15]

Substituting Moy into Eq. 11, and using the periodicity condition

STy ds = 0, we get
Pro,
2 0

2u,Pr
~ sy~ =0 [16]

with only one positive solution

2u, 20\ | 24
b= (7) o (71

This allows us to determine the normalized shape of the snake by
integrating Eq. 13, which yields
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Fig. 2. Comparison of analytical and numerical solutions. (a) The maximum
tangent angle 6.« obtained by numerically solving (Eq. 9) is well approxi-
mated by 6y, the amplitude of 6 obtained from the linearized Egs. 11-13.
Different circles correspond to the values of Pr for the shapes shown in Fig. 3b.
Here, Be = 0.4, Vi = 0.04, although Be and Vi do not affect the normalized
shape of the snake (i.e., Omax) (see Fig. 3a). (b) The dimensionless active
moment Mo, obtained from the numerical solution of Eq. 9, is a linear function
of the dimensionless passive viscosity Vi (left and bottom axis, Pr = 0.1, Be =
0.4). We also fit Mo using k; + k; Vi and plot ki/Moy (triangles), k»/(2m)* 6o
(circles) (top and right axis). k1/Mog and k»/(2m)* 6p are ~1 when Pr > 0.2, which
validates Eq. 14. The scaled elastic bending stiffness Be used here is 0.4, but the
exact value does not affect Mo (see text).

0 5
x=s5+0(68),y =;T(1 —cos(2ms)) + O(6y), s € [0,1].

[18]

To determine the regime of validity of this approximate solution,
we solve the complete system (Egs. 9 and 10) numerically using the
boundary value problem solver bvp4c in Matlab. In Fig. 2 @ and b
we show the variation of the amplitude 6, as a function of Pr for
comparison with Eq. 17, and the relation between Mo and Vi for
comparison with Egs. 14 and 15. We find that the approximate
solution to the linearized equations agrees well with the numerical
results even when the normalized shape of the snake is far from a
sinusoidal curve.

Exogenous Dynamics. The results of our linearized analysis, sum-
marized in Egs. 17 and 18, suggest that the normalized shape of the
steadily moving snake depends only on the exogenous parameters:
the longitudinal and lateral friction coefficients w, and w,, and the
lateral resistive force Pr. Indeed, in Fig. 3a, we show that the
normalized shapes for various values of the dimensionless passive
elastic and viscous resistance Be, Vi collapse into a single curve, i.e.
the passive elasticity and viscosity of the snake do not affect the
normalized shape of the snake. An immediate implication of this
result is that for a given environment, if the arc-length within a
period / (and thus the wavelength within a period A) remains
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Fig. 3. The effects of exogenous and endogenous dynamics on the normal-
ized shape of asnake. (a) The effects of scaled passive elasticity Be and viscosity
Viontheshape of the snake normalized by the arc-lengthin a period. The solid
line shows one period, whereas the dashed line shows the track, which is the
same as the solid line, left behind. The observed collapse of all the shapes
shows that the passive elasticity and viscosity do not affect the normalized
shape. Here, Pr = 0.18. (b) The effects of exogenous dynamics, i.e., the
substrate resistance Pr, on the normalized shape of the snake; we see that the
normalized amplitude is large when Pr is small and small when Pr is large.
Here, Be = 0.4, Vi = 0.04. (c) The effects of two extreme forms of the active
moment on the normalized shape, with M1 = m, sin(27s) (solid), Ma; = my,
tanh(3sin(27s)) (dashed and dotted) (Inset). We see that the normalized shape
isnotstrongly affected by the form of the active moment, for arange of values
of Be and Vi. Here, Pr = 0.1.

constant, the snake can increase its projected velocity in the
direction of motion v, = wA/27 by increasing the frequency o of its
flexural waves. This is qualitatively consistent with observations of
lateral undulatory motion of limbless lizards and snakes on land
(16-19) who increase their velocity by increasing their frequency of
bending.

The solution (Eq. 17) also shows that the amplitude of undulation
0o is large when Pr is small, i.e. when the substrate is easily
deformable and small when Pr is large (Fig. 2a), i.e. when the
substrate is not very deformable. When Pr >> ;LW/[J,;, the frictional
drag due to the snake’s weight is unimportant and the normalized
shape does not change much with Pr; however, when Pr << p,w/plz,,
the frictional drag due to the snake’s weight is important and 6y ~
1/ VE~ The cross-over occurs when Pr ~ }LW/[.L!Z, = 5. In Fig. 3b, we
show the normalized shape of a period of the snake x(s), y(s) for
various values of Pr obtained by solving the nonlinear system (Eq.
9). The results are consistent with (Eq. 17); the normalized shape
has a small amplitude when the substrate is not very deformable,
and has a large amplitude when the substrate is easily deformable.

Endogenous Dynamics. We now turn to the role of the active moment
in determining the gait of the organism. We have seen that the
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passive elasticity and viscosity characterized by the parameters Be
and Vi do not affect the normalized shape of a snake when the
active moment is a simple periodic function. To investigate the
effect of the form of the active moment, we consider two extremes:
a simple sinusoid M, = m,; sin(2ms/l) and an approximation to a
square wave M, = myg, tanh(3 sin(2s/l)). In Fig. 3c, we show that
the normalized shape of the snake for the two forms of the active
moment is essentially the same for a range of values of Be, Vi, i.e.,
it is independent of the detailed distribution of muscular forces
along its body.

However, the active moment is clearly important in determining
the speed and the energetics of lateral undulatory locomotion,
which we will now consider. During steady undulation, the power
generated by muscular contraction is balanced by the dissipation
due to endogenous and exogenous sources. Substituting Eq. 6 into
Eq. 5 and using Eq. 3 yields, after integrating over one period by
parts using Eq. 10, the power balance equation

1 1
- vf kM ds = vf (mwpg + molp| + mIvk;)ds. [19]
0 0

Here, the left side is the power generated by the active moment, and
the right side is the sum of the power dissipated by external
frictional forces and the internal (viscous) frictional dissipation. In
the small amplitude approximation, with 6 = 6, sin(27s), the scaled
version of Eq. 19 reads Mo = 2(u,, + 2u,Préy/m)/60y + (2m)*6y Vi =
Moy + (27)*6 Vi, where the last equality follows from Eq. 16. We
observe that this relation is identical to Eq. 14, which we can also
interpret as an equation for power balance. We see that the
dissipation due to the lateral force dominates the contribution due
to the weight of the body when 2u,Préy/m > w,, while the
dissipation due to internal friction is important when (2m)*63Vi >
2. It is worth noting that these approximate results based on an
analysis of the linearized equations are valid even when the ampli-
tude is not small (see Fig. 2b).

Optimal Undulation

Having characterized lateral undulatory movements in the absence
of any optimization criterion-imposed constraints, we now turn to
some problems that involve the optimization of lateral undulatory
movements that arise naturally; that of maximizing mechanical
efficiency, that of minimizing the internal torque, and that of
maximizing the velocity of progression. Answering these questions
allows us to set the absolute scale of the speed v and arc-length per
wave /[ of the organism, and thus define the performance envelope
of this mode of locomotion.

Maximizing Mechanical Efficiency. Our energetic estimates allow us
to define a mechanical efficiency of lateral undulatory movement
x as the ratio of the energy required to move an inactive limbless
organism in the direction of motion to the energy expended
internally and externally due to active lateral undulatory move-
ments, so that

1
f ,pgcostds
0
X= , [20]

1
f (wwpg + mplp| + mlves)ds
0

which, in terms of the scaled variables, may be written as

1
f m,cos0ds
0

X = ; . [21]
f (w,, + p,Prlsing| + Vik})ds
0
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Fig. 4. The energetics and efficiency of lateral undulatory locomotion. (a)
The mechanical efficiency x as a function of Pr (top right axes) and Vi (bottom
left axes), obtained by solving Eq. 9 numerically (solid line) is well approxi-
mated by Eq. 22 (dash-dot line). (b) The optimum arclength /ot (red curve) and
the maximum projected velocity vy,,,, (rest curves) as a function of Pr. The
environment temperatures are 15°C (V' = 3.0/s) and 25°C (V' = 8.4/s). The
maximum of /opt is 1 m, the length of the snake. For all the calculations, ¢ = 4,
§=0.2,and Be = 0.4.

In the small amplitude approximation, with 6 = 6, sin(2s), we find
that

2\l  2upM
(e + 21, PrOy/m + (2m)*03VI)  Mob,

X [22]

where 6y, Mo are given by Eqs. 17 and 14, respectively. We see that
the mechanical efficiency is proportional to the projection of the
undulation in the direction of motion A/, and is inversely propor-
tional to the active moment Mo. In Fig. 4a, we show the variation
of the mechanical efficiency y as a function of Pr and Vi, obtained
by solving the complete nonlinear system (Eq. 9). Again, we see that
the analytical approximation (Eq. 22) is able to capture the depen-
dence of the efficiency on Pr and Vi well. As expected, an increase
in Vi reduces the mechanical efficiency. However, Pr affects the
mechanical efficiency nonmonotonically, because small values of Pr
imply a small projection of the velocity in the direction of move-
ment, i.e. a small A//, whereas large values of Prlead to a large lateral
frictional dissipation. By maximizing the mechanical efficiency
defined by Eq. 22, we find the y reaches its maximum when / reaches
its maximum, and is of the order of the organism’s body length. This
result could help rationalize the observation that there are usually
only one or two waves along the body of snakes, worms and other
slender undulating organisms.

So far, we have not considered any limitations on the active
moment m,. In extreme conditions when the muscles of the snake
are maximally contracted, it pays to minimize the amplitude of the
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active moment m,. When m, in Eq. 14 is minimized with respect to
[ for a given v, we get an expression for the arc-length in a
wavelength given by

[ = 27(nlv/C)"* = 2R (mqu/4C) "4, [23]

We note that this power law makes / relatively insensitive to 1, v, C.
Using typical values for a 1-m-long grass snake with R = 1.25 cm,
v=0.1m/s, n = 10 KPas, and C ~ pg ~ 1 N/m, we find [, = 0.42m,
which is qualitatively consistent with observations.

Maximizing Velocity. Muscles have their physiological limitations.
When skeletal muscle is maximally activated, i.e., it is in a tetanized
state, the contractile stress and velocity of the muscle are related by
the Hill relation (20)

P/Py = (1 = VIVy)/(1 + cVIVy), [24]

where P is the contractile stress in muscle, Py is the maximal
contractile stress, } is the velocity of muscle contraction, V is the
maximum velocity of muscle contraction and c is the Hill parameter
characterizing muscle type (see SI Appendix). In lateral undulatory
locomotion, assuming that the contractile stress P acts over an areal
fraction 8 of muscle at each cross-section and an effective moment
arm R (see Fig. 1a), for a simple sinusoidal form of the contractile
moment, we may write

mgsin(2ms/l) = P-wR>8/2'R, [25]

where a factor of 1/2 accounts for the fact that muscles are activated
only on one side of the snake at a given instant of time. From Eq.
25, we see that the contractile stress required to produce the active
bending moment reaches its maximum at s = //4. The velocity of
contraction V' for a steadily moving organism is the strain rate of the
muscle times its length /y, so that

V = (Rk)dy = Rk,l. [26]

From Eq. 24, we see that P is a decreasing function of V; and reaches
its minimum at the inflection point s = /4 where V, k, reach their
maximum (Eq. 26), so that the muscle there first reaches the limits
determined by the Hill relation. In the linearized approximation
inherent in Eq. 14, this allows us to write the scaled form of the Hill
relation (Eq. 24) at s = 1/4 in terms of Egs. 25 and 26 as

176l2U

alm = Mo, + asv [27]
where a; = 27T2 5P0 R/p()glz, ar = |!_<§|1/4R/V12, as = 47T40011R2/p(gl4,
V' = Vylly, and ks is the dimensionless form of «,. This additional
physiological constraint implies that when the muscle of the snake
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is maximally activated, the velocity v = u(l), i.e. it is a function of the
arc-length / and cannot be chosen independently. This allows us to
pose another optimization problem: for a given snake moving in a
given environment what is its maximum velocity projected in the
direction of motion, v, = max(v [ cos(0) ds)? In Fig. 4b we use
Eq. 27 to determine the maximum projected velocity v, as a
function of Pr. The Hill relation then also allows us to determine the
optimum choice of the arc-length in a period [, as a function of
Pr. We see that v, peaks for an intermediate value of Pr. To
understand this we observe that when Pr is small, the undulations
are large and thus the projected velocity is small. When Pr is large,
the larger frictional forces cause the organism to have a smaller
velocity. This implies that there is an optimal substrate on which the
snake moves fastest, which is consistent with quantitative experi-
ments on the speed of garter snakes moving on different substrates
(21). This maximum velocity v, is qualitatively the same over a
range of values of areal fraction of muscle at each cross-section &,
and the Hill parameter c. However, v, is sensitive to changesin 1/
the maximal muscle contraction velocity which varies with temper-
ature: for example, v, at 25° Cis more than twice larger than that
at 15°C (solid green and blue curves) when Pr ~ 1, consistent with
observations (22, 23). The Hill relation (Eq. 27) also allows us to
study the effects of size on speed, an aspect that is discussed
elsewhere (SI Appendix).

Discussion

In this paper, we have tried to dissect the role of the various
exogenous and endogenous dynamical variables that characterize
these movements in a hitherto unexplored context: undulation on
an anisotropic frictional environment that does not allow for
transverse slip. Our mathematical model, which leads to a nonlinear
boundary value problem, accounts for the role of a passive collec-
tive viscoelasticity of the tissue, an active moment subject to certain
physiological constraints and a simple frictional law that accounts
for the interaction of the slender organism with the environment.

A combination of analysis and numerical simulation of the model
yields a number of results which we summarize: the normalized
shape of the organism is determined primarily by the interaction of
the organism with its external environment, whereas the speed and
energetics of locomotion are determined by the internally gener-
ated periodic active moment generated by muscle contraction.
These results are consistent with prior qualitative experimental
observations. In addition, we can define parts of the performance
envelope of undulatory propulsion on land by posing and solving
some simple optimization problems for the maximization of the
efficiency and velocity of the organism. However, our analysis is
limited to a consideration of steady movement without proprio-
ceptive feedback, which effect is crucial in understanding how the
organism responds to the forces that it senses, so that many
questions remain for further study.
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