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Abstract

We propose a new multiscale simulation method which seamlessly combines the conventional molecular dynamics (MD) with the
continuum mechanics formulated under the material point method (MPM). In MPM, modified interpolation shape functions are
adopted to reduce artificial forces on the hierarchical background grids. The multiscale method is validated using the examples of step-
like wave and wave packet propagations within a bar. The method is applicable to several kinds of potentials including the
Lennard—Jones, EAM and a bonding-angle related potential for silicon. Examples of high energy Cu—Cu and Si-Si cluster impacts are
presented. The evolution of displaced atoms is found to depend on the underlying lattice structures. For the case of Cu—Cu cluster
impacts, stacking faults play an important role. The displaced atoms, visualized in the method of “‘local crystalline order”, propagate in
an anisotropic manner. This implies the anisotropy in energy transformation process through multi-interactions among cluster and

surface atoms.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many physical phenomena, such as crack propagation,
turbulence, and high energy cluster impacts, occur in
multiple length scales. Different length scales interact
strongly to generate complicated behaviors. These phe-
nomena pose notorious difficulty in computation.
Although the continuing advances in massively parallel
computing have reached the capacity of simulating as
many as 19 billion atoms [1], it is not easy to model the
mesoscale and macroscale events even with this formidable
computational power. A frequent scenario is that a vast
region of these phenomena does not require explicit
atomistic treatment. To reduce the burden of computation,
the combined atomistic and continuum description was
developed to bridge various length scales [2-7]. Here we
add to this practice by advocating a new multiscale scheme
that seamlessly handshakes the conventional molecular
dynamics (MD) and the material point method (MPM). In
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this scheme, an atomistic region is surrounded with a
MPM continuum region. Proper boundary conditions are
developed between the two regions to ensure seamless
coupling.

In the last decade, high energy cluster impacts have arose
much interest in the thin film growth. A number of impact
experiments and simulations have been reported [8—13],
addressing various issues on aspects concerning the
materials, the cluster size, the incident energy, the damage
formation, the crater formation, and the sputtering
technique. The process of high energy cluster impacts
inherently involves complex and multidimensional defor-
mations, produces high pressure, temperature and shock
waves, and introduces melting or even evaporation [14,15].
Were these phenomena described by a continuum descrip-
tion, the conservation equation of energy, together with the
conservation equations of mass and momentum, should be
used to consider the thermal effects. To close the governing
equations, an equation of state (EOS, a relationship among
pressure, volume and internal energy) is also required. Yet
simple EOS, such as the EOS of Tillotson [16], cannot
accurately describe the intricate process. MD avoids a
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priori imposition of the EOS and requires only reliable
potentials. Yet MD simulations are limited by the
computation capacity addressed before. Therefore, the
combined MD and continuum formulation is suitable to
model these highly challenging phenomena.

During the process of energetic cluster impacts, atoms
near the impingement site are seriously distorted to
different kinds of structures, and they can even be squeezed
to the very proximity with each other. Energized atoms can
have much higher velocity, escape the bondage of the
substrate and flee away as monomers and small clusters.
The process manifests in the form of a melting crater. Thus
a reliable potential should be employed [17] in the MD
region to describe this highly distorted region. In the
nearby region of the crater, atoms are seriously disturbed
and produce highly nonlinear deformation. This region is
also modeled with MD description. Leaving away from the
impingement site, atoms still keep vibrating in small
deformation near ideal lattice sites. We use MPM to
handle this less entangled region. This macroscopic
description merely needs proper constitutive relations for
specific materials.

The plan of the paper is as follows: after an outline of
MPM, the coupling of the multiscale method is described
in detail. Tests are presented to demonstrate the satisfac-
tory performance of the method. The method is then
applied to energetic cluster impacts. The results will show
that the underlying lattice structures play an important role
in the process of impacts.

2. MPM/MD handshaking method
2.1. The material point method ( MPM)

Motion of a continuum is governed by conservation
equations of mass, momentum and energy. If one lets p be
the mass density, v the velocity, ¢ the Cauchy stress, b the
specific body force and a the acceleration, the conservation
equations for mass and momentum are

‘i) = —pv . ])’ (1)

V-6 + pb = pa. (2)

Though not listed here, one has to bear in mind that the
consideration of thermal effects may involve the conserva-
tion of energy. In MPM, a material is discretized into
a collection of material points (particles) as illustrated in
Fig. 1(a). Each material point is assigned a mass based on
the volume it covers and the initial mass density. Eq. (1) is
satisfied if the mass of each material point is kept fixed
throughout the computation. To provide a Lagrangian
description of material points, other properties, such as
position, velocity, acceleration, stress, strain and constitu-
tive parameters are also assigned to each material point.
The Lagrangian scheme usually results in mesh lockup and
entanglement if the material is seriously distorted. Yet in
MPM the conservation equation of momentum is solved

O @)

\
'.4 7 3
o0

—O5

iy

o
. 1 2
C

O O
(a)
/i /)
(R
| | | |
1 |
| —
...... 1A —|— - —
L
S A
/ /
/ /
_ /
(b)
| S o -
L/ A |
— :
e e e,
A L
—7 ... v/
/ / /
/ / /

(©)

Fig. 1. (a) A schematic view of two-dimensional (2-D) MPM calculation.
The solid lines show a regular hierarchical grid. The black dots are
material points. Four material points in each element are located at the
reduced coordinates (+0.5,+0.5) and this arrangement is usually adopted
in MPM. Graphs (b) and (c) delineate two kinds of three-dimensional (3-
D) hierarchical grids. Four and eight finer background elements are
condensed to one big element.

on a background Eulerian mesh and thus avoids the
trouble of mesh entanglement. For clarity, in this paper all
variables with subscript i or j are associated with Eulerian
description, representing values on background grids.
Variables associated with Lagrangian description,
representing material point values, are labeled by
subscript p. The discretized form of Eq. (2) takes the
following form [18]

Ny )
Zmijaj =fi’m +f?ma i=1:""Ng’ (3)
J=1

where my;; is the consistent mass matrix, a; is the
acceleration on node j, fi" and f* are the internal and
external forces on node i, and N, is the number of grid
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nodes. By introducing interpolation shape functions, the
mass matrix, internal and external forces are defined by [18]

N,
my =Y myNi(x,)Nj(xp), )
=1

. Nﬂ
f;nt — Z — Vpa(xp) . VNi(xP)a
=1

Np
[3=84 ) mpb(x,)Ni(xy), (%)
p=1

where m, and V), are the mass and volume of the pth
material point, Ny(x) is the interpolation shape function on
node i, t; is the surface traction associated with node 7, and
N, is the number of material points. Usually the consistent
mass matrix is replaced by a diagonal mass matrix for
computation efficiency. The expense is a slight amount of
numerical dissipation [19]. By doing so, Eq. (3) takes the
reduced form

m;a; zfi‘nt +fle'Xt7 l= 15"

where the diagonal mass matrix is

'5Nge (6)

NP
mi=2m,,Ni(x,,), i=1,---,N,. (7
p=1

The discrete momentum conservation equation (Eq. (6))
is solved on a background grid. The obtained grid
accelerations are used to update the state of each material
point. To update the stress state on each material point, a
constitutive relation is required. The Lagrangian descrip-
tion of MPM follows with material points and thus easily
accommodates a history dependant constitutive relation. In
this paper, our attention is focused on the coupling of
different regions, i.e. the MPM/MD regions. The coupling
needs the match of constitutive relations in the two regions.
Their difference in formulations dictates that the matching
can only be enforced in the elastic regime when atoms or
material points in the coupling layer are vibrating from
their equilibrium sites in small amplitude. For linear elastic
materials, the relation between the stress and strain in the
MPM region can be simplified as

6=C:¢ wheree = % [(Va) + (Vo). ®)

The symbol C denotes the fourth-rank elasticity tensor
and u the displacement field. For nonlinear elastic
materials, C is a tangential stiffness tensor and varies with
the strain of the material. After updating the information
on material points, the background mesh can be discarded
which enables adaptive meshing [20] or reused for the next
time step. Details of time-integration algorithm can be
found in Ref. [18]. Several kinds of modified algorithm
[21,22] are employed to improve the accuracy. In this
paper, we adopt the algorithm described in Ref. [21]. A
fixed Eulerian background mesh is used here for simplicity.

For most MPM calculations, standard finite element
(FE) shape functions [23] are adopted to map information
between material points and background grids [20]. For the
hierarchical grid as illustrated in Fig. 1(a), the standard FE
shape function on node 5 is

Nsem =50 = — ) ©

Consider the special case of a uniformly stressed state,
the internal force (Eq. (5)) simplifies to

N,
V,VNi(xp), where ¢ = a(x,)Vp.
p=1

(10)

int
fit=—o.

For the hierarchical grid in Fig. 1(a), f i‘mA is not zero (for
i=1, 4 and 5). We call this non-zero f™ the artificial
forces. To suppress its occurrence, we modify the
interpolation shape functions. The square terms in the
standard FE shape functions are replaced with their
absolute value. For example, the interpolation shape
function on node 5 in Fig. 1(a) is modified to the following
bilinear form

Nst&m =31 = &)1 = Il (1

Similar modification can be exercised for three-dimen-
sional (3-D) background grids, i.e. replacing the square
terms with their absolute value. By doing so, the internal
forces vanish for the special case in Fig. 1(a). It is also true
for the 3-D cases as illustrated in Fig. 1(b) and (c) if eight
material points are located at the reduced coordinates
(£0.5,£0.5,£0.5). After modification, the interpolation
shape functions are linear in each direction, so that the
modification can suppress artificial forces on hierarchical
nodes. A step stress wave is used to test the modified
interpolation shape functions in hierarchical MPM scheme.
The stress wave propagates along [100] direction. Sliding
boundary conditions are employed in directions perpendi-
cular to [100]. The 3-D background mesh in Fig. 1(c)
is employed and each contains eight material points, that
are initially located at the reduced coordinates
(£0.5,+£0.5,+£0.5). Fig. 2 shows the snapshots of the stress
wave propagating along [1 0 0]. It can be seen that along the
boundary of hierarchical background grids there are no
visible artificial forces. The simulated stress wave agrees
well with the analytical stress wave. It can also be seen that
some small short-wavelength phonons are not supported
by the coarse MPM region and part of the stress wave is
reflected on the boundary. Proper damping [24] on the
boundary is expected to reduce the amplitude of the
reflected waves.

One drawback of the linear interpolation shape func-
tions is that the functions are not smooth across adjacent
cells. The lack of smoothness can produce numerical noise
in MPM. The generalized interpolation MPM [25] can
remove numerical artifacts inherent in the MPM formula-
tion when material points fail to register in a self-similar
fashion on the background computational grid. To focus
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Fig. 2. Amplitude of a step stress wave propagating from a finer MPM
region to a coarser MPM region. The two regions are separated by x = 0.
The step line is the corresponding analytical stress wave with amplitude of
100 MPa. (a) Profile of the stress wave in the MPM finer region. (b) Profile
of the stress wave that has passed into the coarser MPM region.

our attention on the coupling of the MPM/MD regions, we
instead use the linearized interpolation shape functions
proposed here.

2.2. The handshaking of MPM/MD regions

Embedded-atom method (EAM) potentials [26] provide
a simple framework for accurate description of noble
transition metals. In EAM scheme, the total energy of a
mono-atomic system is represented as

B =33 603+ Y Fip). (12)
i i

Here ¢(rj) is a pair potential as a function of distance
between atoms i and j, and F is the embedding energy as a
function of the host electron density g; at site i which is
induced by the other atoms in the system as

pi=Y_ plry). (13)

J#i

Here p(ry) is the electron density function. The second
term in Eq. (12) is volume dependent and represents, in an
approximate manner, many-body interactions in the
system. Thus many-body effects are facilely considered by
introducing the embedding energy function, and the
computation efficiency is comparable to simple pair
potential models. Because EAM potentials are widely used
in MD simulations, we choose them to illustrate the
coupling of MPM/MD regions. The successful inclusion of
the many-body effects would render its application to pair
and triple potentials straightforward.

The handshaking scheme described here spatially divides
the physical system into the MPM/MD regions (Fig. 3).
An imaginary surface (interface) is drawn between the
MPM and MD regions. The handshaking domain is
composed of regions I, II and III. The width of
each region should be not less than a potential cutoff.
In regions II and III, material points are initially located
at the ideal lattice sites. Displacement boundary conditions
are employed to decouple the two regions [2]. Regions II
and III supply the boundary conditions for the MD
region as illustrated in the top diagram in Fig. 3 (b).
Conversely, as illustrated in the bottom diagram in
Fig. 3(b) atoms in region I supply the boundary conditions
for the MPM continuum region. At each time step in
the MD calculation, particles in regions II and III
are viewed as atoms (Fig. 3 (b)). Position of each atom
in regions II and III is conveyed from the position of
the corresponding particle. Forces on each atom in the
MD region are obtained from the total energy (Eq. (12))
by taking derivatives with respect to the atomic coordi-
nates. Particles in regions Il and III have different bearings
in the MD and the continuum calculations. In the MD
calculation, each particle is assigned an electron cloud
density under Eq. (13). The electron density on each
particle in region II is partly induced by particles in
region III so that the latter serves to provide an atomic
atmosphere to particles in region II. Similarly, the electron
density on each atom in region I is partly induced by
particles in region II, and region II serves to provide an
atomic atmosphere to atoms in region I. Accordingly, an
electron density corresponding to the deformation
throughout the simulation is correctly obtained in regions
I and II. At each time step in the MPM calculation, atoms
in region I are viewed as particles (Fig. 3 (b)), and each
particle receive information, such as mass, volume,
position, velocity and stress that needed for MPM
calculations, from the corresponding atoms. The back-
ground mesh is extended to region I for the MPM
calculation. Each particle evolves under the discrete
momentum equation (Eq. (6)). In the MPM calculation,
atoms in region I are different from the atoms in the MD
calculation. They evolve under the discrete momentum
equation which is solved on background grids. Thus the
mass, velocity and internal force on the background grids
near the MPM/MD interface are partly induced from the
“particles’ in region I.
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Fig. 3. (a) Schematic view of a bar under tension. Only a slice of the bar (FCC crystal) is shown. Big squares represent heavy material points. Small
squares represent light material points. Circles represent atoms. The solid lines delineate the background mesh. Dotted boxes denote the right part of the
handshaking region. The dashed line represents the interface between the MPM and MD regions. Right arrows symbolize boundary forces under 500 MPa
theoretical stress. Graph (b) enlarges the handshaking region in (a). Filled circles in region I represent atoms. Filled circles in regions II and III are material
points. The top diagram in (b) elucidates the MD calculations and the bottom one the MPM calculations. Background mesh is extended to region I for

MPM calculations.

After the two regions decouple as illustrated in Fig. 3 (b),
each region evolves under their governing equations
concurrently with a suitable time step. For MPM, the
critical time step is proportional to the smallest element size
and inversely proportional to the wave speed of the
material [27]. In the MPM/MD handshaking scheme
proposed here, the concurrent time step, determined by
the time step for the MD calculation, is in the magnitude of
fs and is small enough for the stability of MPM
calculations.

The decouple scheme ensures equality of the displace-
ment field in the MD/MPM regions. Since forces are
explicitly avoided in the decouple scheme, the stress
equilibrium between the two regions is not established a
priori. As pointed out by Kohlhoff et al. in Ref. [2], the
stress equilibrium in the two regions requires the equal
elastic constants between the continuum/MD regions. Also

it can be seen in the validation part that the matching of
elastic constants in the MD/MPM regions is a necessary
condition. For simplicity, up to second-order elastic
constants are considered here, which corresponding to
linear elasticity. For cubic crystals under linear deforma-
tion, there are three elastic constants Cy;, Cip and Cyg.
These constants can be derived from the atomic potential
and then are used in the MPM region. Thus the MPM
region only sustains elastic deformation. The dividing of
the MD/MPM regions should be based on physical
conditions. When plastic deformation approaches the
handshaking region, the MD region should be extended
to ensure the covering of the inelastic region throughout
the simulation. Also when there is no need of MD
description, that region should be reversed into the MPM
region. The hierarchical, adaptive, material point method
developed by Tan and Nairn [20] is expected to achieve this
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goal. Here in our simulation the MD region is large enough
and the MPM region only sustains linear elastic deforma-
tion. Thus a fixed background mesh is adopted for
simplicity.

Leaving the handshaking region, material points are
enlarged to represent many atoms, rendering the computa-
tional efficiency of MPM. We generalize the hierarchical
background mesh [20] to the 3-D case. For bulk materials,
the background mesh can be enlarged in three directions,
i.e. eight elements condense to one big element (Fig. 1(c)).
Similarly for plates and bars, the background mesh can be
enlarged in two (Fig. 1(b)) or one directions, i.e. four or
two elements condense to one element. Material points are
enlarged in proportion to the background mesh. The mass
of each material point is proportional to the volume it
covers. The coarser the mesh, the heavier the material
points initially placed in that element. The reduced
coordination of each material point is the same after the
enlargement, i.e. the material points and background mesh
are enlarged proportionally. The enlargement results in
missing degrees of freedom. As the size of background
mesh increases, a small portion of short-wavelength
phonons are not supported by the coarser mesh, as shown
in Fig. 2. The largest spacing depends on the shortest
wavelength phonons expected to propagate unimpeded in
the MPM region.

2.3. Validation of the MPM/MD handshaking method

The multiscale method developed here handshakes the
MD/MPM regions. The MPM region provides an envir-
onment for the MD region. The seamlessness of the
method has two meanings. First, the outer load applied in
the MPM region can pass into the MD region without
obvious hindering. Second, the disturbance in the MD
region, arising from the bond breaking at the crack tip [4]
or from energetic cluster impacts, can propagate into the
MPM region without obvious reflection. Usually the
former is easy to be implemented, while the latter is more
difficult to be achieved since the continuum region usually
is coarser and may not support some short-wavelength
phonons. Thus the validation here is divided into two
parts, validating the two meanings separately.

The first example tests the transmission ability from the
MPM region to the MD region. An undisturbed FCC
crystal lattice was embedded in the MPM region as
illustrated in Fig. 3(a). The bar is 3-D but only a slice of
which is shown. A uniform tensile step force is applied at
time zero at the right end of the bar. Hierarchical mesh (of
rather large mesh size) and material points are employed in
the MPM region. In the handshaking region material
points are placed at the ideal crystal lattice sites. In the
coarse MPM region, eight finer elements and lighter
material points condense to one big clement and one
heavier material point (Fig. 1(c)). Forces on boundary are
applied on material points along [100]. In Y, Z and —X
directions we use sliding boundary conditions. Periodic

side boundary conditions are applied in the MD region for
the consistency with the MPM region. The potential in Ref.
[28] for Cu is employed here. The initial temperature is set
at zero. The definition of the stress on an atom is based on
Virial theorem. Here we use the stress used by Schiotz et al.
[29]. Note that the bar in Fig. 3(a) is only a schematic view
and the true region of simulation is much larger.

Fig. 4 shows the passing of stress wave from the MPM to
the MD region. The analytical solution is obtained by
using the elastic constants in the MPM region. It can be
seen that the simulation results agree well with the
analytical solution. No visible wave reflection is observed
in the handshaking region. Note that the stress configura-
tion fluctuates along the analytical solution. The fluctua-
tion in the MPM region is partly due to discretization since
a continuum of infinite degrees of freedom is replaced by
material points of limited degrees of freedom. Another
reason is the lack of smoothness of the interpolation shape
functions. The generalized interpolation MPM [25] can
reduce numerical artifact noise which might be expected in
MPM calculations. Contrasting with that in MPM region,
the fluctuation in MD region is intrinsic since atoms are
discrete.

For the purposes of comparison, we also show the results
when the elastic constant C;; in the MPM region are twice
as large as that of the MD region (Fig. 5). For this case, the
simulated wave velocity and profile deviate significantly
from their analytical counterparts. The analytical wave
moves fast because the elastic constant C;; in the MPM
region is larger. The stress in the MD region is lower due to
the smaller deformation in the stiffer MPM region. Figs. 4
and 5 indicate that g, is continuous in the handshaking
region, which is expected from the continuum stress wave
theory. The lateral stress components o), and .., on the
other hand, may suffer jumps across the interface if elastic
constants on the two sides mismatch each other. To
validate the seamlessness of this method, one needs to

Py I S - MPM.Finer. Region. .
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D £
MD R?glon —7 \ ’,\ _.

| Analytical __| |
Solution |

-200 0 200
X(Angstrom)
Fig. 4. Stress wave propagates from the MPM region to the MD region.

The analytical solution corresponds to a 500 MPa step stress wave.
Different regions are denoted in the figure.
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Fig. 6. Profile of the stress component o.. along the bar. In this case the
elastic constant Cy; in the MPM region is twice of that in the MD region.

make sure that the lateral stresses are also continuous on
the two sides. Fig. 6 shows the profile of ¢., along the bar
for the case when elastic constants on the two sides are
mismatched. A big jump occurs across the MPM/MD
interface. Fig. 7 shows the profile of ¢.. along the bar for
the case of elastic constants on the MPM/MD regions that
match each other. The equal level of o, on two sides of the
interface indicates that this MPM/MD handshaking
scheme looks seamless.

The quasi-static performance of this MPM/MD hand-
shaking method is also tested. A damping force is used to
quiet the bar. At long times, all velocities of material points
and atoms approach zero and the final solution corre-
sponds to a static loading of an end-loaded bar. The stress
distribution is shown in Fig. 8. The distribution of o, is
not shown on the right MPM force boundary since
solutions are usually not very accurate on the boundary
just like FE method. The stress in the MD region is slightly
higher and the stress in the MPM region is slightly lower.

400

o MPa

-200 0 200
X(Angstrom)

Fig. 7. Profile of the lateral stress component . along the bar for the case
of elastic constants on the MPM/MD regions match each other.

P - R S -

] T oo T

480

460 F--eeee- A feeeenans i

X(Angstrom)

Fig. 8. Profile of the lateral stress component o, along the bar for static
loading.

The maximum deviation amounts to 0.36% of the true
value, a scatter regarded acceptable for applications.

We also test the method for Lennard—Jones potential,
EAM potential for BCC crystals [28] and a highly
optimized empirical potential for silicon [30]. The results
are similar and thus encouraging. From above one can see
that the load applied in the MPM region can pass into the
MD region almost without impeding.

Like Mosecler et al. [24], we use Gaussian wave packets
with small standard deviations to test the transmission
ability of short-wavelength fluctuations produced in the
MD region. The simulation configuration is similar with
the configuration in Fig. 3, but the background mesh is
uniform and refined, providing each particle occupies a
mesh. The disturbance is first initiated in the MD region.
Two Gaussian wave packets, with a standard deviation of
one and a half lattice constant of copper, are initiated in
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Fig. 9. Amplitude of two Gaussian wave packets. The region of x>0 is
the MD region. The region of x<0 is the MPM region.

the MD region and they propagate in the opposite
directions (Fig. 9). The leftward propagating wave passes
from the MD region to the MPM region, while the
rightward propagating wave is a reference and propagates
always in the MD region. It can be seen that only a small
fraction of wave is reflected back into the MD region. Even
when the standard deviation is as small as one lattice
constant, more than half of the energy passes into the
MPM region. Moseler et al. found that a proper damping
on the P-Q boundary could drastically reduce the
amplitude of the reflected waves on the P-Q boundary
[24]. Here damping is not employed in the handshaking
region but the transmission ability is still better than the
conventional Langevin MD [31] for Gaussian wave packets
with standard deviation greater than one lattice constant.

3. Application to high energy cluster impacts

3.1. Evaluation of the EAM potential adopted in high energy
cluster impacts

In high energy cluster impacts, atoms near the impinge-
ment site are distorted to different kinds of structures and
they can be at the very proximity of each other. Thus a
reliable potential should describe correct energy levels,
configuration stability and atomic interactions at short
separations. We choose the EAM potential proposed in
Ref. [17]. The potential is fitted by using more fitting
parameters and can accurately predict energies and
stability of different coordination numbers. It is suitable
for modeling surface sputtering and shock waves, and thus
suitable for energetic cluster impacts.

We model the impact of two bars to evaluate the
performance of the EAM potential developed by Mishin
et al. [17]. The two bars are made of the same material,
Copper. One bar flies with a certain velocity impacting with
the other which is initially at rest. The initial temperature is
set as 300 K. Periodic boundary conditions are employed
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Fig. 10. The relationship between the mass velocity and the shock
velocity. Filled circles are the simulation results using the EAM potential
in Ref. [17]. Up and down triangles are experimental data of Mitchell
et al. [32].

along directions perpendicular to the bar. After impact,
two shock waves propagate from the impact interface into
the interiors of bars. For symmetric impact (the flying
object and the target is of the same material), the mass
velocity (velocity of particles behind the shock front) is one
half of the impact velocity according to the continuum
theory. We find that the velocity of atoms behind the shock
front oscillates around a certain value and can be far away
from that value. But the averaged value of atoms behind
the shock front is almost one half of the impact velocity.
The mass velocity here denotes the averaged value. The
shock velocity is the velocity of the shock front. Fig. 10
shows the relationship of the mass velocity and the shock
velocity. It can be seen that simulation results agree well
with the experiment data in Ref. [32] when the impact
velocity is below 14 km/s (corresponding to a mass velocity
of 7km/s).

Fig. 11 shows the 293K isothermal pressure—volume
relationship of the EAM potential in Ref. [17]. The results
agree well with the experiment data in Ref. [33] at low
pressure and at high pressure up to 1 TPa, they also agree
with the first-principle calculations in Refs. [34,35].

3.2. Methodology of high energy cluster impacts

We use the multiscale simulation method proposed here
to model high energy cluster impacts. Normal impacts of
Cu clusters flying with a velocity of 10 km/s are simulated.
The configuration (illustrated in Fig. 12) is arranged as
follows. Cu clusters are formed from a spherical cutoff of
an FCC lattice and are initially placed symmetrically above
the target surface. The top surface (001) of the single
crystal substrate is kept free and the rest five surfaces are
fixed throughout the simulation. The time step is chosen to
ensure that the changing of atom positions at one step is at
least one magnitude smaller than the equilibrium atom
spacing. The temperature is initially set at zero but allowed
to evolve freely. For all cases the simulation time is up to
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10 ps and the simulation region is chosen large enough to
avoid the reflected waves from the fixed boundary to the
MD region. For computational efficiency, the background
mesh is not the finest. The background mesh in Fig. 12 can
let a Gaussian wave packet with a standard deviation
greater than three times lattice constant transmit the
handshaking region without considerable reflection. For
the impact of a cluster with 1052 atoms, the target is
represented by a bulk region of dimension 277.6 x
277.6 x 138.8 nm°, containing over 2.3 million atoms and
0.5 million material points. Were the total region modeled
with atomistic description, about 900 million atoms would

1000
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Fig. 11. 293K isotherms for Cu. The solid line represents the simulation
results using the EAM potential in Ref. [17], the downward pointing
triangles are from Mao et al. [33], the dot line shows the calculated curve
of Wang et al. [34], and the dashed line shows the calculated 300K
isotherms curve of Nellis et al. [35].
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be needed. Material points are arranged in five hierarchical
layers, with each material point in the outside layer
condensates eight material points (binary condensation in
each direction) in the inner layer.

The visualization of impacted atomistic system requires
the identification of displaced atoms. A displaced atom is
conventionally defined as an atom whose potential energy
is a certain value above its bulk status [36]. This definition
is followed in Refs. [10-12]. The certain arbitrariness of “‘a
certain value” in that definition renders our adoption of
another criterion. We define a displaced atom as an atom
whose structure, in terms of the “local crystalline order”
[37,38], is altered to a non-FCC structure. Different colors
are assigned to different structures to provide a clear image
of defects: atoms with local FCC order are referred to as a
perfect lattice and are colored transparent, atoms on and
above target surface are colored white denoting surface and
sputtering atoms, atoms with local HCP order are colored
red and thus denoting stacking faults, atoms with other 12-
coordinated combinations are colored green, and atoms
with none 12-coordinated combinations are colored yellow.
For Si, displaced atoms are defined as those with none
four-coordinated atoms and are colored green. Surface
atoms are also colored white.

3.3. Simulation results

Graphs in Figs. 13-15 give snapshots of impact for
clusters with 14, 128, and 1052 atoms. It can be seen that
damage first spreads out almost in an isotropic manner
(graph (a) of Figs. 13-15). Afterward, disordered atoms
prefer to propagate along the four directions [10 1], [10 1],
[011]and [011] (graphs (b) and (c) of Figs. 13-15). This
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Fig. 12. A schematic view of high energy cluster impacts. Only a slice of material points and atoms are shown. Circles represent atoms. Small squares
represent light material points, and big squares represent heavier material points. Solid lines denote the background mesh. Only one layer hierarchical

grids are shown.
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Fig. 13. (a)—~(e) Frontal views (view from [1 00]) of local crystalline orders for 0.2, 0.4, 0.5, 0.7 and 1.0 ps after impact for the cluster with 14 atoms. Graph

(f) shows the bottom view for graph (c). Only atoms with non-FCC crystalline order are shown.
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Fig. 14. (a)—(f) Frontal views of local crystalline orders for 0.2, 0.4, 0.7, 1.2, 3.1 and 10 ps after impact for the cluster with 128 atoms.
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Fig. 15. (a)~(d) Frontal views of local crystalline orders for 0.2, 0.6, 4.2 and 6.2 ps after impact for the cluster with 1052 atoms. For clarity, the frontal half
atoms of (b, ¢) are removed. Graph (e) is the view from [—11 —1] of graph (c), and graph (f) is the bottom view of graph (c).

(A) (B)

(©)

Fig. 16. Illustration of the deformation process. (A) Thick black lines denote the four intersection lines of four slip planes {11 1}. Damage prefers to
propagate along the four thick black lines. Graphs (B) and (C), corresponding to the cases of small and large cluster impacts, respectively, show the
deformation rate in different directions of the crater’s top view. Thick back lines denote the planes that propagate in the directions shown by short solid
arrows. This propagation leads to higher deformation rates in the directions of dotted long arrows.

damage evolution process is made clearer through the
bottom view in Fig. 13(f). These four directions are
denoted in Fig. 16(A) as thick black lines. Damage spread
along the four intersection lines of the four closely packed
slip planes {111}. As rarefaction waves come from
the surface, the number of disordered atoms diminishes
(Figs. 13(d—e), 14(d—f) and 15(d)). For the cluster with 14
atoms, hardly any disordered atoms are left after several
picoseconds. For the cluster with 128 atoms, rarefaction
waves let the disordered atoms labeled by “A” rotate
inward, as shown in Fig. 14(c—d). Stacking faults appeared

in the later stage of impact and at 10ps two partial
dislocations interact with each other as shown in Fig. 14(f).
For the cluster with 1052 atoms, the anisotropy is not
evident compared with the clusters having fewer atoms. In
the late stage of impact, many stacking faults appeared.
The stacking faults propagate along the four close packed
planes {1 1 1}. Most of them intersect on the four directions
[toi], [fod], [011], [0T1], and the rest on the two
directions [1 10] and [1 10] (Fig. 15(c—f)). Dislocation loops
can be observed in Fig. 15(c). It can also be seen that the
four common slip directions of slip planes (illustrated in



156

(a) (b

Z. Guo, W. Yang |/ International Journal of Mechanical Sciences 48 (2006) 145-159

i

(©)

Fig. 17. (a)~(c) Top view of the local crystalline orders for 0.5, 0.8, 1.7 ps after the impact with a cluster of 128 atoms.

Fig. 18. (a)—(c) Top view of the local crystalline orders for 0.6, 4.2 and 10 ps after the impact with a cluster of 1052 atoms.

Fig. 16(A)) are the most favorable propagation paths of
displaced atoms. For clusters with 14 and 128 atoms,
hardly any sputtering yield is observed; while many
monomers and small clusters are sputtered out for the
cluster with 1052 atoms.

The evolution of crater shapes also indicates that the
FCC lattice structure plays an important role in the impact
process. For the cluster containing as few as 14 atoms, no
observable crater is left after 10 ps. For the cluster with
128 atoms, the crater’s top view evolves from a circle
(Fig. 17(a)) to a square (Fig. 17(b)), and then back to a
circle (Fig. 17(c)). For the cluster with 1052 atoms, the
crater’s top view evolves from a circle (Fig. 18(a)) to a
square (Fig. 18(b)) which is rotated about 45° from that in
Fig. 17(b). In an impact process, damage first spreads out
in an isotropic manner and leads to a circular top view of
the crater. Then the disordered atoms prefer to propagate
along the four directions illustrated in Fig. 16(A). Since the
region of displaced atoms is small, actually four small
planes propagate along the four directions. The deforma-
tion rate along the intersection lines is higher, changing the
crater’s top view from a circle to a square, as shown in
Fig. 17(b). In the late stage of impact, there is not enough
energy to drive the small planes in Fig. 16(B) outward and
the protrusion of the central parts gradually changes the

crater to a circular top view (Fig. 17(c)). Because the
anisotropy is not evident for the cluster with 1052 atoms,
the crater’s top view keeps a circle until stacking faults
burst (Fig. 15(c—f)), which makes damage to propagate
along the four close packed planes {111}. The deformation
rate in their intersection directions is larger (illustrated in
Fig. 16(C)) and the top view of the crater evolves from a
circle to a square rotated 45° (Fig. 18(b)). The same
configuration persists at 10 ps as shown in Fig. 18(c).

It can be seen that energetic cluster impacts differ from
nanoindentation in several aspects. Nanoindentation of
MD simulations [38,39] aims to mimic quasi-equilibrium
experiments, while the process of high energy cluster
impacts is far away from the equilibrium state, character-
ized with high deformation rates. The impact case is
intrinsically thermo-mechanically coupled and proceeds
with possible state changes. The propagations of shock
waves [15] as well as the front of the disordered atoms
dominate the initial stage of the impact. The formation of
the stacking faults and dislocation bursts, as frequently
observed in the initial stage of nanoindention [38,39], only
occurs in the late stage of cluster impact. The behavior of
incipient plasticity also depends on the impact speed.

For the purposes of comparison, impacts of Si clusters
on Si surface are also simulated. We adopt the potential
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Fig. 19. (a)—(c) are frontal views of the local crystalline orders at 0.4, 1.3, and 2.5 ps after a Si cluster impacting on a Si substrate. The Si cluster contains
260 atoms. Graphs (d—f) correspond to the top view of graphs (a—c). The white spheres represent surface atoms, and the green ones represent atoms with

none four-coordinated combinations.

proposed in Ref. [30]. The potential combines the Stillinger
and Weber (SW) formulation [40] and the EAM form [26].
That potential provides a reasonable description of the
energetics for all atomic coordinations Z, from the dimmer
(Z=1) to FCC and HCP (Z = 12). It accurately predicts
formation energies and geometries of interstitial com-
plexes: small clusters, interstitial-chain and planar {311}
defects. One possible drawback of the potential is that the
domain of the functions which comprise the potential is set
by the extent of the fitting data. When evaluation of the
potential leads to arguments beyond their domain, one has
to use extrapolations. We regard that as a minor deficiency
and ignorable for the purpose of qualitative comparison.
Various graphs in Fig. 19 are snapshots of frontal and top
views of local crystalline orders for a Si-Si cluster impact. It
can be seen that the target first deforms in an isotropic
manner in the initial stage of impact, as shown in Fig. 19(a, d).
Anisotropic damage in the target emerges subsequently, as
indicated in Fig. 19(b, e¢). More damage occurs in [110]
and [110] directions, which is quite distinct from that of a
Cu—Cu cluster impact. At the late stage of impact, the
target recovers to an almost isotropic profile (Fig. 19(c, 1)),
in contrast to the anisotropic profile for the Cu—Cu impact
(Fig. 15(c-)).

For hypervelocity impacts of macroscopic bodies, the
crater is almost hemispherical with volume proportional to

the impacting energy of the macrocluster, provided the
impacting velocity is high enough [41]. This volume
dependence on the impacting energy is valid for micro-
cluster impacts at least for the following three cases. Case
one is the simulated impacts of an Ar cluster (containing
atoms from 13 to 3000) on a Si (00 1) surface [10], for total
cluster energies of 0.5-55keV. Case two is the simulated
impacts of an Ar cluster (containing atoms from 200 to
800) on a Cu (00 1) surface [42], for total cluster energies of
620keV. Case three is an experiment result featuring
impacts of an Ar cluster (containing 3000 atoms) on a Au
(111) surface [42], for total cluster energies between 20 and
150keV. These cases indicate that the peculiar damage
formation process is caused by an isotropic energy
transportation process [10]. Here in our simulations the
total Cu cluster energies vary from 0.5 to 35keV and the
total Si cluster energy is 4 keV. The simulation results here
show that the damage formation process, created by a
cluster impact, possesses certain anisotropy which is in
accordance with the results developed by Nordiek et al.
[43]. They found that the shape and size of craters
depended on the surface orientation. They explain this
anisotropy from two aspects. One is that the propagation
velocity of disturbances relies on different crystallographic
directions. The other is that the shear mode, a stretch along
the [100] axis and a compression of the same amount
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along the [010] axis, costs the lowest energy. Thus
the crater formation is enhanced in directions <100
(Fig. 18(b)). Since dislocations manifests macroscopically
as shear deformation, the burst of stacking faults (Fig.
18(b)) is the underlying cause of the enhanced deformation
in directions <100 ). So the anisotropy of crystals dictates
the anisotropic evolution of craters under the energetic
cluster impacts. The displaced atoms propagate along
preferable paths. Accordingly, the energy transportation
process, characterized with multi-interactions among the
cluster and surface atoms, is not an isotropic process. The
underlying anisotropic lattice structure plays an important
role in the impacting process and makes this transportation
process anisotropic. For Cu cluster impacts on Cu surface,
displaced atoms prefer to propagate along the intersection
directions of slip places.

4. Conclusions and discussions

A seamless MPM/MD handshaking scheme is developed
here. Modified interpolation shape functions are used to
suppress artificial forces in MPM. Tests have demonstrated
the satisfactory performance of this multiscale method in
both dynamic and static simulations. The method is
applicable to potentials including pair, triple or many-
body interactions. Using this MPM/MD handshaking
method, we have studied high energy Cu—Cu and Si-Si
cluster impacts. The underlying lattice structure is found to
play an important role in the deformation process. For
Cu—Cu impacts, we observe that disordered atoms first
spread isotropically, then propagate preferably in the
intersection directions of slip planes {1 11}. For a larger
cluster impact (such as a cluster with 1052 atoms), stacking
faults burst in the later stage of impact. The evolution of
craters validates this deformation process. For Si-Si
impacts, the anisotropy is not evident comparing with that
of Cu—Cu impacts, indicating the importance of underlying
lattice structures. All simulations point to anisotropic
damage formation.

In our simulation, the temperature is initialized at 0 K,
like that in Refs. [2,4,44]. For finite temperature simula-
tions, velocity of material points should be thermalized to a
Maxwellian distribution [44]. For different temperatures,
elastic constants and lattice spacing vary in the MD region.
Thus the elastic constants in the MPM region and lattice
spacing in the handshaking region should change in
accordance with that in the MD region. Another problem
is the dissipation in the MPM region. If the elasticity
theory is used in the MPM region, vibration modes will
propagate undamped. In order to thermalize short-
wavelength phonons and also to allow energy to be
dissipated in the MPM region, the MPM degrees of
freedom should be weakly coupled to a Brownian heat bath
whose dynamics are set to the temperature at which the
simulation is being performed [44]. Thus Newton’s
equations of motion are replaced by Langevin equation
[45]. In this case, an external force, which combines a

random force and a frictional dissipation term, is
prescribed on each material point. Also a proper damping
[24] is expected to reduce the reflection waves on the MPM/
MD boundary.

Acknowledgements

Our investigation in nanomechanics is sponsored by the
National Natural Science Foundation of China under
Grants 101212202, 10332020 and 90205023.

References

[11 Kadau K, Germann TC, Lomdahl PS. International Journal of
Modern Physics C 2004;15:193.
[2] Kohlhoff S, Gumbsch P, Fischmeister HF. Philosophical Magazine A
1991;64:851.
[3] Yang W, Tan HL, Guo TF. Modelling and Simulation in Materials
Science and Engineering 1994;2:767.
[4] Abraham FF, Broughton JQ, Bernstein N, Kaxiras E. Computers in
Physics 1998;12:538.
[5] Tan HL, Yang W. Acta Mechanica Sinica 1994;10:237.
[6] Tadmor EB, Ortiz M, Phillips R. Philosophical Magazine A
1996;73:1529.
[7] Shenoy VB, Miller R, Tadmor EB, Rodney D, Phillips R, Ortiz M.
Journal of Mechanics and Physics of Solids 1999;47:611.
[8] Yamada I, Matsuo J, Insepov Z, Aoki T, Seki T, Toyoda N. Nuclear
Instruments and Methods B 2000;164-165:944.
[9] Haberland H, Insepov Z, Moseler M. Physical Review B 1995;51:
11061.
[10] Aoki T, Matsuo J, Insepov Z, Yamada I. Nuclear Instruments and
Methods B 1997;121:49.
[11] Aoki T, Seki T, Matsuo J, Insepov Z, Yamada I. Nuclear
Instruments and Methods B 1999;153:264.
[12] Aoki T, Matsuo J, Takaoka G. Nuclear Instruments and Methods B
2003;202:278.
[13] Insepov Z, Yamada I. Nuclear Instruments and Methods B 1999;
153:199.
[14] Insepov Z, Yamada I. Nuclear Instruments and Methods B 1996;
112:16.
[15] Ma XL, Yang W. Nanotechnology 2004;15:449.
[16] Tillotson JH. General Atomic Division of General Dynamics Report
GA-3216, 1962.
[17] Mishin Y, Mehl MJ, Papaconstantopoulos DA, Voter AF, Kress JD.
Physical Review B 2001;63:224106.
[18] Sulsky D, Chen Z, Schreyer HL. Computer Methods in Applied
Mechanics and Engineering 1994;118:179.
[19] Burgess D, Sulsky D, Brackbill JU. Journal of Computational
Physics 1992;103:1.
[20] Tan HL, Nairn JA. Computer Methods in Applied Mechanics and
Engineering 2002;191:2095.
[21] Sulsky D, Zhou SJ, Schreyer HL. Computer Physics Communica-
tions 1995:87:236.
[22] Bardenhagen SG. Journal of Computational Physics 2002;180:383.
[23] Hughes T. The finite element method. Upper Saddle River, NIJ:
Prentice Hall; 1987.
[24] Moseler M, Nordiek J, Haberland H. Physical Review B 1997;56:
15439.
[25] Bardenhagen SG, Kober EM. CMES-Computer Modeling in
Engineering and Sciences 2004;5:477.
[26] Daw MS, Baskes MI. Physical Review B 1984;29:6443;
Daw MS, Baskes MI. Physical Review Letters 1983;50:1285.
[27] Sulsky D, Brackbill JU. Journal of Computational Physics 1991;
96:339.



Z. Guo, W. Yang |/ International Journal of Mechanical Sciences 48 (2006) 145-159 159

[28] Doyama M, Kogure Y. Computational Materials Sciences
1999;14:80.

[29] Schietz J, Vegge T, Di Tolla FD, Jacobsen KW. Physical Review B
1999;60:11971.

[30] Lenosky TJ, et al. Modelling and Simulation in Materials Science and
Engineering 2000;8:825.

[31] DePriesto AE, Metiu H. Journal of Chemical Physics 1989;90:1229.

[32] Mitchell AC, Nellis WJ. Journal of Applied Physics 1981;52:3363;
Mitchell, et al. Journal of Applied Physics 1991;69:2981.

[33] Mao HK, Bell PN, Shaner JW, Steinberg DJ. Journal of Applied
Physics 1978;49:3276.

[34] Wang Y, Chen DQ, Zhang XW. Physical Review Letters 2000;
84:3220.

[35] Nellis, et al. Physical Review Letters 1988;60:1414.

[36] Caturla MJ, Diaz de la Rubia T, Gilmer GH. Nuclear Instruments
and Methods B 1995;106:1.

[37] Swygenhoven HV, Farkas D, Caro A. Physical Review B 2000;
62:831.

[38] Ma XL, Yang W. Nanotechnology 2003;14:1208.

[39] Kelchner CL, Plimpton SJ, Hamilton JC. Physical Review B 1998;
58:11085;
LiJ, Van Vliet K, Zhu T, Yip S, Suresh S. Nature 2002;418:307;
Zhu T, Li J, Van Vliet KJ, Ogata S, Yip S, Suresh S. Journal of the
Mechanics and Physics of Solids 2004;52:691.

[40] Stillinger F, Weber T. Physical Review B 1985;31:5262.

[41] Herrmann W, Wilbeck JS. International Journal of Impact Engineer-
ing 1987;5:307.

[42] Insepov Z, Yamada I. Nuclear Instruments and Methods B
1999;153:199.

[43] Nordiek J, Moseler M, Haberland H. Radiation Effects and Defects
in Solids 1997;142:27.

[44] Broughton JQ, Abraham FF, Bernstein N, Kaxiras E. Physical
Review B 1999;60:2391.

[45] Adelmann SA, Doll JD. Journal of Chemical Physics 1976;64:2375;
Adelmann SA, Doll JD. Journal of Chemical Physics 1987;86:4885.



	MPM/MD handshaking method for multiscale simulation and its application to high energy cluster impacts
	Introduction
	MPM/MD handshaking method
	The material point method (MPM)
	The handshaking of MPM/MD regions
	Validation of the MPM/MD handshaking method

	Application to high energy cluster impacts
	Evaluation of the EAM potential adopted in high energy cluster impacts
	Methodology of high energy cluster impacts
	Simulation results

	Conclusions and discussions
	Acknowledgements
	References


